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Complex Systems: Challenging for Simulation

3

Electrochemical Interfaces: 

Necessary to describe
No Classical Molecular 

Potentials
Þ Breaking and making of bonds
Þ Molecules in gas phase, liquids, solids, and interfaces
Þ Non-ideal surfaces with various kinds of defects
Þ Possibly solvent effects and effect of electric field

Solid-Liquid Interface

Complex Interfaces

N. Artrith: Machine-Learning Potentials

Realistic length scales: 
Challenging with first principles



Potentials for Materials

• Empirical Potentials:

Efficient

Simple functional form /
usually not reactive

Transferability problem

General + Predictive

Reactive Þ proton transfer (chemical reactions)

No unique combination of, e.g.,
xc functional + vdW correction

Computationally demanding

• Ab initio (First Principle) MD Potentials:

N. Artrith: Machine-Learning Potentials 4



Accelerating Simulations with Machine Learning

State of atomistic simulations
Ø First-principles methods to compute accurate energies and atomic forces

à accurate but computationally expensive
Ø Empirical atomic interaction potentials

à computationally efficient but only reliable for specific applications

Can machine learning help?

Idea: Train efficient machine-learning model to reproduce first-principles results

à Need descriptor of atomic structure as input. 

Ø Model for energy & forces: machine-learning potential

Ø All kind of structure-property relationships: classification, interpolation 

5N. Artrith: Machine-Learning Potentials



• Potentials Based on Ab Initio Calculations:

Accurate + Efficient

Reactive           depends on approach

Reference 
Calculations 

e.g. DFT
Applications:
MD, MC, etc.

Interpolation

Continuous            
Efficient PES

• Our Approach:

Very accurate

Reactive                    
+ Full-dimensional

• Artificial neural networks for interpolation

• Not based on many-body expansion of the PES, 
no bonds/angles need to be specified

Þ

Þ

Potentials for Materials

6N. Artrith: Machine-Learning Potentials



Machine-Learning Potentials:

Direct application of ML to MC/MD simulations

N. Artrith: Machine-Learning Potentials 7



Artificial Neural Networks for Regression

8

Ø ANNs can approximate arbitrary continuous functions

Ø Universal Approximation Theorem
G. Cybenko, Math. Control Signals Syst. 2 (1989) 303–314. 
K. Hornik, Neural Netw. 4 (1991) 251–257. 
B. Hanin (2017) arXiv 1708.02691.

Ø Ideal for the approximation of high-dimensional functions

Ø Our approach: Use ANNs to approximate the potential 
energy surface



Machine Learning for Atomic Structures
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Small Example for
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T.B. Blank, S.D. Brown, A.W. Calhoun, and D.J. Doren, J. Chem. Phys. 103 (1995) 4129.
S. Lorenz, A. Groß, and M. Scheffler, Chem. Phys. Lett. 395 (2004) 210.



12
11

1
1 ay ×

12
21

1
2 ay ×

2
1

12
21

1
2

12
11

1
1 bayay ++
2
1b

Parabola
NN

Input
Layer

Hidden
Layer

Output
Layer

( ) ( ) 2
1

01
111

1
1

112
11

01
121

1
2

112
21 baGbfaaGbfaENN +×++×+=

X2

x

Ø The NN can learn the functional form of the PES

Training the Neural Network:

x

Parabola:  x2

Epoch

Standard Neural Network
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Training the Neural Network

Ø Example:
1D cut of water dimer PES 

ROO

Ø Minimize error function for energy (and forces)

Þ The NN can learn the functional form of the PES

before fitting before fitting

T. Morawietz, A. Singraber, C. Dellago, J. Behler Proc. Natl. Acad. Sci. U. S. A. 113, (2016) 8368-8373.



Conventional ANNs are not Transferable

Ø ANNs have a fix input dimension

Ø If the input is atomic coordinates, the ANN can only be 
used for one specific number of atoms

Ø Hence, the ANNs are not transferable to atomic structures 
with different numbers of atoms

à NOT a replacement for interatomic potentials

12N. Artrith: Machine-Learning Potentials



Conventional ANNs do not Exhibit Physical Invariants

Ø ANNs are not automatically invariant with respect to 
translation & rotation of the atomic structure

Ø ANNs are not invariant with respect to the exchange of 
two equivalent atoms

à NOT a replacement for interatomic potentials

13N. Artrith: Machine-Learning Potentials



J. Behler, and M. Parrinello, Phys. Rev. Lett. 98, (2007) 146401.

The Behler-Parrinello Approach: Invariant ANN Potentials

1. The total energy is the sum of atomic energies

!"#" = %
&

'"#()

!&

2. ANNs represent the atomic energies !&

3. The input for the ANNs are invariant representations of
the local atomic environment

à Suitable replacement for interatomic potentials

14N. Artrith: Machine-Learning Potentials



Universal Atomic Energy Function
Decomposition of the total structural energy into atomic contributions

N. Artrith: Machine-Learning Potentials

! * = %
&

atoms
!&(*)

Total energy of 
structure σ

Energy of the i-th atom
in structure σ

In embedded atom models (EAM) the atomic energy is 

!& * = 23 %
&45

67(8&5) +
1
2
%
&45

<37(8&5)

Embedding
function

Contribution to
charge density

Pair potential

à Physically motivated functional form, but not flexible. No dependence on bond 
angles. The model is not appropriate for every structure/chemical species.

à Use machine learning to determine universal atomic energy function

15



High-Dimensional Neural Network
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J. Behler, and M. Parrinello, Phys. Rev. Lett. 98, (2007) 146401.
J. Behler, R. Martoňák, D. Donadio, and M. Parrinello, phys. stat. sol. (b) 245, (2008) 2618.
J. Behler, J. Chem. Phys. 134, (2011) 074106.
N. Artrith, T. Morawietz, and J. Behler,  Phys. Rev. B  83, (2011) 153101.

FingerprintAtomic
Positions

Atomic
NNs

Atomic 
Energies

Total 
Energy

Set of many-body functions that describes the local environment
of each atom “structural fingerprint”: a radius of 6-8 Å

ü For high-D NN
ü Rotation
ü Translation



Short-Range and Long-Range Energy

Ø In systems with multiple chemical species, 
electrostatic interactions may become important

Ø Electrostatic interactions are long-ranged

Ø Cannot (strictly) decompose the electrostatic 
energy into atomic contributions

Ø However, the charge can be calculated
à no unique way, but consistent recipes

Ø Train a separate high-dimensional ANN for 
the atomic charges

N. Artrith, T. Morawietz, and J. Behler,  Phys. Rev. B  83, (2011) 153101.



Extension to Multicomponent Systems

18

Atomic energies

Atomic charges

Ewald 
summation

Atomic
Positions

Symmetry
Functions

Atomic
NNs

Es =  Ei
i
S 

Etot=Es+Eel

N. Artrith, T. Morawietz, and J. Behler,  Phys. Rev. B  83, (2011) 153101.
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Extension to Multicomponent Systems

N. Artrith, T. Morawietz, and J. Behler,  Phys. Rev. B  83, (2011) 153101.

Ø In practice: electrostatic interactions are screened in 
condensed phases

Ø Slightly longer-ranged potentials can often capture 
the effective electrostatic interactions
(e.g., using 8 - 15 Å instead of 6 Å)

Ø Confirmed for many different oxide materials



Example: Copper Dimer
AuxCuy Crystal Structures

“Before fitting”
Random parameters

High-Dimensional:

Au1Cu3

Au2Cu2 Au3Cu1

Au1Cu3

Au1Cu3

Neural Network Fitting



Þ Conclusion:
NNs can establish a functional 
relationship between the 
structure and its energy

Example: Copper Dimer High-Dimensional:

Au1Cu3

Au2Cu2 Au3Cu1

AuxCuy Crystal Structures

Au1Cu3

Au1Cu3

Neural Network Fitting



Descriptors of the
Local Structural Environment

N. Artrith: Machine-Learning Potentials 23



Properties of the Atomic Energy

Like the structural energy, the atomic energy is invariant with respect to

Ø Exchange of equivalent atoms (order of counting) and

Ø Translation/rotation of the entire structure.

Any (machine-learning) model must obey these invariants.

N. Artrith: Machine-Learning Potentials
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Radial & Angular Distribution Functions

Atomic Radial Distribution Function

N. Artrith: Machine-Learning Potentials 25

Atomic Angular Distribution Function

Gi
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45

Approach: Use the radial and angular distribution of atoms and atom types as 
descriptor.



Behler-Parrinello Symmetry Functions 
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Radial symmetry functions Angular symmetry functions

l = -1l = +1

J. Behler, and M. Parrinello, Phys. Rev. Lett. 98, (2007) 146401. J. Behler, J. Chem. Phys. 134, (2011) 074106.  
N. Artrith, T. Morawietz, J. Behler, Phys. Rev. B 83, (2011) 153101.

0             1              2              3            4              5             6            

Rij [Å] 



Challenge: Multicomponent Materials

N. Artrith: Machine-Learning Potentials 27

Behler- Parrinello (BP) uses parameters for all possible combinations of 
species. 

Example BP descriptor for 3 atomic species A, B, and C 
(potential for species A):
Ø Radial: A-A, A-B, A-C à factor of N
Ø Angular: A-A-A, A-A-B, A-A-C, A-B-B, A-B-C, A-C-C à factor of O(N2)
àDescriptor size scales with N(N+1)/2 where N is the number of 

species
Quadratic scaling!

Very challenging to construct MLPs with more 
than 4 atomic species using BP descriptor.



ML does not Require Complete Descriptors

N. Artrith: Machine-Learning Potentials 28

BP functions are not complete in the structural space but are suitable for the 
construction of ANN potentials.

Machine-learning techniques are useful when only
incomplete descriptors are available!

Ø The descriptor does not have to distinguish between all possible sets of 3-D 
coordinates. It is sufficient to distinguish between relevant atomic 
arrangements.

Ø Similarly, not all chemical combinations occur in real materials. There is no 
need for a complete descriptor of the chemical space!

àConstruct a simple, incomplete yet refinable descriptor of the 
local atomic structure {R} and chemistry {t}



Descriptor for Many Species:
Structure {R} and Chemistry {t}

N. Artrith*, A. Urban, and G. Ceder, Phys. Rev. B 96 (2017) 014112.

N. Artrith: Machine-Learning Potentials 29



Descriptor to Describe Structure {R}

N. Artrith*, A. Urban, and G. Ceder, Phys. Rev. B 96 (2017) 014112.

N. Artrith: Machine-Learning Potentials 30



Structure {R}: Expansion of RDF and ADF
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Expansion of radial (bond length) and angular (bond angle) distribution functions

in an orthonormal basis set {ϕ} (we use Chebyshev polynomials for their 
faster convergence properties compared to Fourier series).

RDF& @ =%
54&

A @ − 8&5 CD(8&5)

ADF& F = %
5,H4&

A F − F&5H CD(8&5)CD(8&H)

Pairs

Triplets

RDF& @ =%
3

I3
J <3 @ for 0 ≤ @ ≤ 8D ADF& F =%

3

I3
O <3 F for 0 ≤ F ≤ P

Both RDF and ADF are invariant wrt. rotation, translation, and exchange of 
equivalent atoms, so the coefficients {cα} can be used as descriptor.

N. Artrith*, A. Urban, and G. Ceder, Phys. Rev. B 96 (2017) 014112.



Visualization of the Chebyshev Polynomials

32

(a) Basis functions (i.e., rescaled Chebyshev polynomials) up to order α = 6 for a 
catoff radius Rc = 8.0 Å. The polynomial of order α = 0 is constant 1 and not 
shown. (b) The corresponding basis functions are only needed for the 
reconstruction of the RDF or ADF.

Q<3 <3

N. Artrith*, A. Urban, and G. Ceder, Phys. Rev. B 96 (2017) 014112.



Descriptor is Systematically Refinable
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The resolution of the descriptor is determined by the expansion order.

Example convergence for the radial distribution function (Li2MnNiO4):

Discrete RDF multiplied 
with cutoff function.

RDF broadened by convolution 
with Gaussians, (b): 0.2 Å, (c): 
0.1 Å, compared to Chebyshev 
expansions of orders (b):50 and 
(c):150.

N. Artrith*, A. Urban, and G. Ceder, Phys. Rev. B 96 (2017) 014112.



Descriptor for Many Species:
Chemistry {t}

N. Artrith*, A. Urban, and G. Ceder, Phys. Rev. B 96 (2017) 014112.

N. Artrith: Machine-Learning Potentials 34



Chemistry {t}: Second Set of Coefficients

N. Artrith: Machine-Learning Potentials 35

To describe the local chemistry, we include a species-dependent weight:

{S}RDF& @ =%
54&

A @ − 8&5 CD 8&5 USV

{S}ADF& F = %
5,H4&

A F − F&5H CD 8&5 CD 8&H USVUSW

Pairs

Triplets

{S}I3
(J) =%

54&

Q<3 8&5 CD(8&5)USV
{S}I3

(O) = %
5,H4&

Q<3 F&5H CD(8&5)CD(8&H) USVUSW

So that the expansion coefficients become

The descriptor of the local chemistry is then {S} X*&
YZ =

{S}I[
(J)

{S}I\
(J)

⋮
{S}I[

(O)

{S}I\
(O)

⋮



The Same Descriptor Size is Optimal for 3-11 Species

36

The combined descriptor is appropriate for Li-TM oxides and amino acid 
complexes with 11 chemical species. The size of the descriptor is constant.

The RMSE was evaluated after 3000 training iterations for 3-5 species and after 
5000 iterations for 11 species.

N. Artrith*, A. Urban, and G. Ceder, Phys. Rev. B 96 (2017) 014112.



Systematic Construction of the Training Set

Refine ANN with new DFT data

e.g. MD simulation

Compare structures 
with DFT

Preliminary ANN fit

Fit 1 Fit 2 Fit 3

Initial Data Set

N. Artrith, T. Morawietz, and J. Behler,  Phys. Rev. B  83, (2011) 153101.
T Morawietz, A Singraber, C Dellago, J Behler Proc. Natl. Acad. Sci. U. S. A. 113, (2016) 8368-8373. 37



Caution: Overfitting and Extrapolation

N. Artrith, T. Morawietz, and J. Behler,  Phys. Rev. B 83, (2011) 153101.
N. Artrith and A. Urban, Comput. Mater. Sci.114 (2016) 135.

Overfitting:

§ Solutions:
› * Carefully sample repulsive regions
› * Output “extrapolation warnings” during MD

Ø Solutions:
› * Early stopping
› * Use gradient info

Extrapolation:

38



Summary of Part I – Theory of ANN Potentials

Ø ANN potentials are interatomic potentials based on 
artificial neural networks

Ø The ANNs represent atomic energies as function of the 
local atomic environment

Ø Input of the ANNs are invariant descriptors (feature 
vectors) of the local atomic environment

Ø Construction/training is done by iterative sampling of the 
relevant structure and composition space

39N. Artrith: Machine-Learning Potentials



Part II
Complex Inorganic Materials 

for Energy Applications



N. Artrith, B. Hiller, J. Behler  
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Training of the ANN potential

DFT code: FHI-aims (PBE) [a]

[a]  V. Blum et al., Comp. Phys. Comm. 180, (2009) 2175 - 2196.
[b]  J. Behler, RuNNer – A Neural Network Code for High-Dimensional PESs, Ruhr-University Bochum

Fitting points: 32,000
RMSEs Etotal = 0.0036 eV/atom

Forces = 0.0415 eV/Bohr 

Testing points: 3,600
RMSEs Etotal = 0.0034 eV/atom

Forces = 0.0416 eV/Bohr

Cu Structures: 
- Bulk: 15,400
- Clusters : 8,400
- Surfaces : 13,800

RuNNer code [b]

Error (meV / atom)

N
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oi
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s 15000

10000

5000

0

Training data:  2 - 100 atoms

Neural Network Potential for Copper



Surface DFT
(meV/Å2)

NN
(meV/Å2)

Cu(111) 93.16 92.74

Cu(100) 100.53 100.99

Cu(110) 102.39 103.92

Cu(110)mr 109.93 111.69

Surface Energies (fcc):

Energy Profile for Cu Adatom Diffusion:

Path  

Cu(111) Cu(100)

Energy profile Path  Energy profile

Low-Index Copper Surfaces



DFT Þ impossible
NN   Þ » few minutes (1 core) 

Model of a real surface with steps, kinks, and adatoms (29,443 atoms).

Þ NN potentials can be used to study systems of this size. 

local atomic enviroments

N. Artrith, and J. Behler,  Phys. Rev. B  85, (2012) 045439.

Cu(111): Complex Realistic Model



Comparison of the DFT and neural network (NN) forces acting on the 
central atoms of clusters cut from the slab.

1 2 3 4

5 6 7 8

9 10 11 12 Þ Very good agreement
Þ NN PES is reliable

Forces:

cluster number

|F
| (

eV
/B

oh
r)

Checking the Accuracy for Large Systems

N. Artrith, and J. Behler,  Phys. Rev. B  85, (2012) 045439.



Ø ANN potentials allow to simulate structural models with thousands 
of atoms while providing high accuracy close to the reference method

Initial configuration/
MD movie

Configuration at 300 ps STM image of
Cu@ZnO(1010), T= 290 K

U. Köhler, et. al,

Phys. Status Solidi B
250 (2013) 1122.

N. Artrith, B. Hiller, J. Behler  

Phys. Stat. Sol. B 250 (2013) 

1191 (invited feature article).

Zn
O

Cu

Figure 4: Monte-Carlo simulations of 
nanoparticles using NN potentialCu@ZnO Catalyst for Methanol Synthesis

Training and testing sets for the ANN potential:
Cu/Zn/O structures: (e.g. ideal, vacancies, defects)  
~100,000 structures (90% train, 10% test) 
RMSEs Etotal : 0.005 eV/atom

Forces: 0.090 eV/Bohr 

ANN-MD Simulation:  Slab model  ~8,000 atoms:  NVT, MD at 1000 K

46



Au/Cu is an efficient and stable catalyst for the ORR and CO2 reduction

Ø How can we identify relevant compositions and (surface) structures?

Oxidation rates of AuxCuy NPs: depend on composition, 
where kA and kl exhibited a trend of  Au2Cu1 < Au < Au1Cu1 < Au1Cu2 < Cu

Shao-Horn, 
Hamad-Schifferli, et. al,
Chem. Commun,
48, (2012) 5626.

TEM: Au1Cu1 NPs after oxidation

5-10 nm
UV/Vis

ANN Potential:  Cu/Au/O/H System



Cluster 923 atoms

Cross-section
Cluster 923 atoms

MC Annealing (movies): 
T= 5,000-300 K

Optimized Compositions and Ordering of Au/Cu: MC



MC Annealing: T= 5,000-300 K

Þ Composition of Au/Cu NP (~6 nm) and cut-through in (100) and (111) directions

Þ No longer a core-shell morphology
Þ Outer layer of the NP is gold-terminated (as expected from the surface-energy)
Þ Interior bulk Au and Cu atoms form a solid solution

CPU time/structure:  147 atoms 
NN << DFT : 104

DFT :  3.0  hours      (16 cores)  
NN   :   < 1  second  (1 core)

CPU time/structure:  3,915 atoms
DFT :  Very difficult
NN   :  59 seconds  (1 core)

Optimized Compositions and Ordering of NPs: 3,915 atoms

49N. Artrith and A. Kolpak, Nano Lett.,14, (2014) 2670.
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ANN

Ø Grand canonical MD
Ø Stable configurations: derived 

from core-shell structure

Ø At 1000K: cluster melts

Ø 300K & 500K: below melting point Ideal Cu13Au42 core-shell

Cu Au

Formation Energies of 55-Atom Cluster and Thermal Stability

N. Artrith and A. Kolpak, Comput. Mater. Sci.,110, (2015) 20-28. 50



(6500 atoms)

55-Atom Cluster in Water and (211) Surface Slab

N. Artrith and A. Kolpak, Nano Lett.,14, (2014) 2670. 51



Specialized ML Potentials for 
Assisting DFT Calculations

N. Artrith: Machine-Learning Potentials 52

Ø Often, a general ML potential is not necessary

Ø ML potential for specific structure space sufficient 
for accelerated sampling



Figure 4: Monte-Carlo simulations of 
nanoparticles using NN potential

Cu Distribution in the particles
Ø MC simulations of a 3.5 nm (~1,300 atoms, Cu54Ce405O834): Cu is most stable near surface
Ø Cu adsorption on (100) surface and on edges favorable

J.S. Elias, N. Artrith, M. Bugnet, L. Giordano, G. A. Botton, A.M. Kolpak, and Y. Shao-Horn*
ACS Catalysis 6,  (2016), 1675-1679 

Active Site in CuO/CeO2 for CO Oxidation

53

Ce OCu



Figure 4: Monte-Carlo simulations of 
nanoparticles using NN potential

Cu Distribution in the particles
Ø MC simulations of a 3.5 nm (~1,300 atoms, Cu54Ce405O834): Cu is most stable near surface
Ø Cu adsorption on (100) surface and on edges favorable

Cu-Cu pair distribution
Ø Cu clustering: Cu-Cu pair distribution
Ø Combined probability that either the nearest 

neighbor (nn) or next-nearest neighbor (nnn) site 
of a Cu defect is also a Cu defect is around 70%

J.S. Elias, N. Artrith, M. Bugnet, L. Giordano, G. A. Botton, A.M. Kolpak, and Y. Shao-Horn*
ACS Catalysis 6,  (2016), 1675-1679 

Active Site in CuO/CeO2 for CO Oxidation

54
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MLP: Application to Amorphous LiPON

55
V. Lacivita, N. Artrith, and G. Ceder, 
Chem. Mater. 30 (2018), 7077-7090.   DOI: 10.1021/acs.chemmater.8b02812

Ø Genetic Algorithm with MLP: 
Ø Amorphous N doped Li3PO4: Solid Electrolyte Material for Li-ion batteries
Ø With N improving the conductivity and diffusivity (from MD simulations of amorphous 

structure models)

Li3+xPO4-xNx

Li3-xPO4-2xNx

Diffusity : LiPO = 10-13 cm2s-1

: LiPON = 10-10 cm2s-1



AIMD: Application to Amorphous LiPON

56

Ø Genetic Algorithm with MLP: 
Ø Amorphous N doped Li3PO4: Solid Electrolyte Material for Li-ion batteries
Ø With N improving the conductivity and diffusivity (from MD simulations of amorphous 

structure models)

LiPON

LiPO

V. Lacivita, N. Artrith, and G. Ceder, 
Chem. Mater. 30 (2018), 7077-7090.   DOI: 10.1021/acs.chemmater.8b02812



LiSi Alloys for High-Capacity Li-Ion Battery Anodes

57

Ø A specialized ANN potential: GA samples only a limited structure space
Ø Only ~1,000 reference structures needed for the construction of a specialized ANN 

potential
Ø Identified low-energy structures are then recomputed using DFT
Ø The result is a first-principles phase diagram based on extensive sampling

N. Artrith*, A. Urban, and G. Ceder, J. Chem. Phys. 148, (2018) 241711 (Editor’s Choice).



LiSi Alloys for High-Capacity Li-Ion Battery Anodes

58

Ø A specialized ANN potential: GA samples only a limited structure space
Ø Only ~1,000 reference structures needed for the construction of a specialized ANN 

potential
Ø Identified low-energy structures are then recomputed using DFT
Ø The result is a first-principles phase diagram based on extensive sampling

N. Artrith*, A. Urban, and G. Ceder, J. Chem. Phys. 148, (2018) 241711 (Editor’s Choice).



A General Machine Learning Potential for LiSi

N. Artrith: Machine-Learning Potentials 59



60

The LiSi ANN Potential is Accurate for Diffusion

ØStructures not in training set
ØTested many different diffusion pathways in different alloy 

compositions

Si
Li
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And it is Accurate for Long MD Trajectories



Amorphous LiSi

62N. Artrith et al. arXiv:1901.09272 (2019)

Si
Li

https://arxiv.org/abs/1901.09272


NP Delithiation (d≈8nm) Shows Si Clustering
Ø MD simulations, over 4 ns at 500 K at each composition, based on 

nanoparticle (NP) structures with ~12,000 atoms.
Ø For composition within the two-phase region a core-shell structure is most 

stable: in the nanoparticle bulk Si atoms are isolated and near the surface 
Si is clustered into short Si chains.

Ø Further Li extraction results in Si clustering throughout the entire NP.

63

Si
Li



ANN MD: The Li Diffusivity Varies with Li Content

64

Ø MD simulations (5 ns) of Li480-xSi128 structures using the ANN potential 
show that structures with Si clusters (LixSi with 1.0 ≤ x ≤ 2.25) exhibit the 
highest Li diffusivities with D ≈ 5-10×10-11 cm2s-1.

Ø Isolated Si atoms (Li3.50Si and Li3.75Si) and structures in which Si forms 
three-dimensional networks (LixSi with x < 1.0) exhibit much lower 
diffusivities of D < 5×10-13 cm2s-1.

Arrhenius Plot xLi Ea (eV) D (cm2s-1)
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3.50 0.682 3.820 × 10-13
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Ø ANN potentials are a versatile tool for the modeling of complex 
materials such as amorphous alloys and non-ideal oxides

Ø With new improved structure descriptors, the method can now be 
used with compositions with more than 10 chemical species 

Ø Training accurate ANN potentials for general applications may require 
large reference libraries (>10,000 structures), but often specialized 
potentials for smaller configuration spaces are sufficient if 
combined with DFT

http://ann.atomistic.net
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Ø More systematic tests needed to understand for 
which materials and applications the MLP method is 
successful

Ø Now that several implementations exist, we should 
have a transferable format for ANN potentials 
(collaborate on standardized format)

Ø How to sample large chemical and configuration 
spaces in the most efficient way?

Ø Including a physically motivated baseline could 
reduce the size of the reference library needed

Outlook
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Some more steps required for ANN potentials to become a 
standard tool (like other potentials):

Ø Interfaces with standard simulation software are needed
à aenet interfaces in development: 

ASE, Tinker, DL_POLY, LAMMPS, PIMD

Ø Implementations have to become compatible so that ANN 
potentials can be shared

Ø Model construction (training) has to be made easier

Ø ANN potential parameter formats should be 
standardized
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