

### Development of Efficient and Accurate MLPs for the Simulations of Complex Materials



### **Nong Artrith**

E-mail: nartrith@atomistic.net Aalto, Finland, May 6, 2019





Center for Functional Nanomaterials Brookhaven National Laboratory

# **Computational Methods and Length Scales**



**Density Functional Theory** 

#### **Atomic Interaction Potentials**

# **Complex Systems: Challenging for Simulation**



## **Potentials for Materials**

#### • Empirical Potentials:

- Efficient
- ⊖ Simple functional form / usually not reactive
- ⊖ Transferability problem

#### • Ab initio (First Principle) MD Potentials:

- General + Predictive
- $\bigcirc$  Reactive  $\Rightarrow$  proton transfer (chemical reactions)
- No unique combination of, e.g.,
   xc functional + vdW correction
- O Computationally demanding

# **Accelerating Simulations with Machine Learning**

#### State of atomistic simulations

- First-principles methods to compute accurate energies and atomic forces
   accurate but computationally expensive
- Empirical atomic interaction potentials
  - $\rightarrow$  computationally efficient but only reliable for specific applications

#### Can machine learning help?

Idea: Train *efficient* machine-learning model to reproduce first-principles results

#### $\rightarrow$ Need **descriptor** of atomic structure as input.

- Model for energy & forces: machine-learning potential
- > All kind of structure-property relationships: classification, interpolation

# **Potentials for Materials**

• Potentials Based on Ab Initio Calculations:



Accurate + Efficient

Reactive → depends on approach

#### • Our Approach:

- Artificial neural networks for interpolation
- Not based on many-body expansion of the PES, no bonds/angles need to be specified

 $\Rightarrow$  Very accurate

# **Machine-Learning Potentials:**

Direct application of ML to MC/MD simulations

### **Artificial Neural Networks for Regression**

### ANNs can approximate arbitrary continuous functions

- Universal Approximation Theorem
   G. Cybenko, Math. Control Signals Syst. 2 (1989) 303–314.
   K. Hornik, Neural Netw. 4 (1991) 251–257.
   B. Hanin (2017) arXiv 1708.02691.
- Ideal for the approximation of high-dimensional functions
- Our approach: Use ANNs to approximate the potential energy surface

### **Machine Learning for Atomic Structures**





#### **Total Energy Expression**



 $\Rightarrow$  Can fit arbitrary functions

T.B. Blank, S.D. Brown, A.W. Calhoun, and D.J. Doren, *J. Chem. Phys.* 103 (**1995**) 4129. S. Lorenz, A. Groß, and M. Scheffler, *Chem. Phys. Lett.* 395 (**2004**) 210.

### **Standard Neural Network**



#### The NN can learn the functional form of the PES

### Training the Neural Network

Minimize error function for energy (and forces)



 $\Rightarrow$  The NN can learn the functional form of the PES

T. Morawietz, A. Singraber, C. Dellago, J. Behler Proc. Natl. Acad. Sci. U. S. A. 113, (2016) 8368-8373.

- > ANNs have a fix input dimension
- If the input is atomic coordinates, the ANN can only be used for one specific number of atoms
- Hence, the ANNs are not transferable to atomic structures with different numbers of atoms

### $\rightarrow$ NOT a replacement for interatomic potentials

- ANNs are not automatically invariant with respect to translation & rotation of the atomic structure
- ANNs are not invariant with respect to the exchange of two equivalent atoms

### $\rightarrow$ NOT a replacement for interatomic potentials

1. The total energy is the sum of atomic energies

$$E_{\rm tot} = \sum_{i}^{\rm atoms} E_i$$

- 2. ANNs represent the atomic energies  $E_i$
- 3. The input for the ANNs are invariant representations of the local atomic environment

### → Suitable replacement for interatomic potentials

J. Behler, and M. Parrinello, *Phys. Rev. Lett.* 98, (2007) 146401.

N. Artrith: Machine-Learning Potentials

# **Universal Atomic Energy Function**

Decomposition of the total structural energy into atomic contributions



In embedded atom models (EAM) the atomic energy is

$$E_{i}(\sigma) = F_{\alpha}\left(\sum_{i \neq j} \rho_{\beta}(R_{ij})\right) + \frac{1}{2}\sum_{i \neq j} \phi_{\alpha\beta}(R_{ij})$$
  
Embedding Contribution to Pair potential function charge density

- → Physically motivated functional form, but not flexible. No dependence on bond angles. The model is not appropriate for every structure/chemical species.
- $\rightarrow$  Use machine learning to determine universal atomic energy function

# **High-Dimensional Neural Network**



J. Behler, and M. Parrinello, Phys. Rev. Lett. 98, (2007) 146401.

J. Behler, R. Martoňák, D. Donadio, and M. Parrinello, phys. stat. sol. (b) 245, (2008) 2618.

J. Behler, J. Chem. Phys. 134, (2011) 074106.

**<u>N. Artrith</u>**, T. Morawietz, and J. Behler, *Phys. Rev. B* 83, (**2011**) 153101.

#### Short-Range and Long-Range Energy

- In systems with multiple chemical species, electrostatic interactions may become important
- Electrostatic interactions are long-ranged
- Cannot (strictly) decompose the electrostatic energy into atomic contributions
- ➢ However, the charge can be calculated
   → no unique way, but consistent recipes
- Train a separate high-dimensional ANN for the atomic charges

N. Artrith, T. Morawietz, and J. Behler, Phys. Rev. B 83, (2011) 153101.

# **Extension to Multicomponent Systems**



#### N. Artrith, T. Morawietz, and J. Behler, Phys. Rev. B 83, (2011) 153101.

# **Extension to Multicomponent Systems**

- In practice: electrostatic interactions are screened in condensed phases
- Slightly longer-ranged potentials can often capture the effective electrostatic interactions (e.g., using 8 - 15 Å instead of 6 Å)
- Confirmed for many different oxide materials

### **Neural Network Fitting**

**High-Dimensional:** 

### **Example:** Copper Dimer

#### Au<sub>x</sub>Cu<sub>y</sub> Crystal Structures -3278.0 DFT NN iteration 0 -3278.5 -3279.0 ер Н -3279.5 NN: Iteration 0001 ∽ ш-3280.0 DFT Au<sub>1</sub>Cu<sub>3</sub> NN Au<sub>1</sub>Cu<sub>3</sub> -3280.5 DFT Au.Cu Δ NN Au,Cu -3281.0 DFT Au, Cu 8 ▲ Energy (eV) A° A° NN Au,Cu, -3281.5<sup>L</sup> 3 4 5 6 8 9 10 11 12 R (Cu-Cu) / a.u. o 4 "Before fitting" **Random parameters** 40 100 120 140 60 80 Au<sub>1</sub>Cu<sub>3</sub> Volume (Å<sup>3</sup>) Au<sub>2</sub>Cu<sub>2</sub> Au<sub>3</sub>Cu<sub>1</sub>

# **Neural Network Fitting**

### **Example:** Copper Dimer



## **High-Dimensional:** Au<sub>x</sub>Cu<sub>y</sub> Crystal Structures



#### $\Rightarrow$ Conclusion:

NNs can establish a functional relationship between the structure and its energy

# Descriptors of the Local Structural Environment



# **Properties of the Atomic Energy**

$$E(\sigma) = \sum_{i}^{\text{atoms}} E_i(\sigma)$$

Like the structural energy, the atomic energy is invariant with respect to

- Exchange of equivalent atoms (order of counting) and
- Translation/rotation of the entire structure.

Any (machine-learning) model must obey these invariants.



# **Radial & Angular Distribution Functions**

Approach: Use the radial and angular distribution of atoms and atom types as descriptor.

**Atomic Radial Distribution Function** 

**Atomic Angular Distribution Function** 



# **Behler-Parrinello Symmetry Functions**

#### **Radial symmetry functions**

#### **Angular symmetry functions**



J. Behler, and M. Parrinello, *Phys. Rev. Lett.* 98, (**2007**) 146401. J. Behler, *J. Chem. Phys.* 134, (**2011**) 074106. <u>N. Artrith</u>, T. Morawietz, J. Behler, *Phys. Rev. B* 83, (**2011**) 153101. **26** 

# **Challenge: Multicomponent Materials**

**Behler- Parrinello (BP)** uses parameters for all possible combinations of species.

Example BP descriptor for 3 atomic species A, B, and C (potential for species A):

- > Radial: A-A, A-B, A-C  $\rightarrow$  factor of N
- > Angular: A-A-A, A-A-B, A-A-C, A-B-B, A-B-C, A-C-C  $\rightarrow$  factor of  $O(N^2)$
- → Descriptor size scales with N(N+1)/2 where N is the number of species

#### **Quadratic scaling!**

Very challenging to construct MLPs with more than 4 atomic species using BP descriptor.

# **ML does not Require Complete Descriptors**

**BP** functions are **not complete in the structural space** but are suitable for the construction of ANN potentials.

# Machine-learning techniques are useful when only incomplete descriptors are available!

- The descriptor does not have to distinguish between all possible sets of 3-D coordinates. It is sufficient to distinguish between relevant atomic arrangements.
- Similarly, not all chemical combinations occur in real materials. There is no need for a complete descriptor of the chemical space!

# $\rightarrow$ Construct a simple, incomplete yet refinable descriptor of the local atomic structure $\{R\}$ and chemistry $\{t\}$

# **Descriptor for Many Species: Structure** {*R*} **and Chemistry** {*t*}

# **Descriptor to Describe Structure** {*R*}

# Structure {*R*}: Expansion of RDF and ADF

Expansion of radial (bond length) and angular (bond angle) distribution functions

Pairs 
$$RDF_i(r) = \sum_{j \neq i} \delta(r - R_{ij}) f_c(R_{ij})$$
  
Triplets  $ADF_i(\theta) = \sum_{j,k \neq i} \delta(\theta - \theta_{ijk}) f_c(R_{ij}) f_c(R_{ik})$ 

in an orthonormal basis set 
$$\{\phi\}$$
 (we use Chebyshev polynomials for their faster convergence properties compared to Fourier series).

$$RDF_i(r) = \sum_{\alpha} c_{\alpha}^{(2)} \phi_{\alpha}(r) \text{ for } 0 \le r \le R_c \qquad ADF_i(\theta) = \sum_{\alpha} c_{\alpha}^{(3)} \phi_{\alpha}(\theta) \text{ for } 0 \le \theta \le \pi$$

Both RDF and ADF are invariant wrt. rotation, translation, and exchange of equivalent atoms, so the coefficients  $\{c_{\alpha}\}$  can be used as descriptor.

# **Visualization of the Chebyshev Polynomials**



(a) Basis functions (i.e., rescaled Chebyshev polynomials) up to order  $\alpha$  = 6 for a catoff radius  $R_c$  = 8.0 Å. The polynomial of order  $\alpha$  = 0 is constant 1 and not shown. (b) The corresponding basis functions are only needed for the reconstruction of the RDF or ADF.

# **Descriptor is Systematically Refinable**

The resolution of the descriptor is determined by the expansion order.

Example convergence for the radial distribution function (Li<sub>2</sub>MnNiO<sub>4</sub>):



# Descriptor for Many Species: Chemistry {*t*}

# Chemistry {*t*}: Second Set of Coefficients

To describe the local chemistry, we include a species-dependent weight:

Pairs 
$${}^{\{t\}} \operatorname{RDF}_{i}(r) = \sum_{j \neq i} \delta(r - R_{ij}) f_{c}(R_{ij}) w_{t_{j}}$$
  
Triplets  ${}^{\{t\}} \operatorname{ADF}_{i}(\theta) = \sum_{j,k \neq i} \delta(\theta - \theta_{ijk}) f_{c}(R_{ij}) f_{c}(R_{ik}) w_{t_{j}} w_{t_{k}}$ 

So that the expansion coefficients become

$${}^{\{t\}}c_{\alpha}^{(2)} = \sum_{j \neq i} \bar{\phi}_{\alpha}(R_{ij})f_{c}(R_{ij}) w_{tj} \qquad {}^{\{t\}}c_{\alpha}^{(3)} = \sum_{j,k \neq i} \bar{\phi}_{\alpha}(\theta_{ijk})f_{c}(R_{ij})f_{c}(R_{ik}) w_{tj}w_{tk}$$
The descriptor of the local chemistry is then
$${}^{\{t\}}\hat{\sigma}_{i}^{R_{c}} = \begin{pmatrix} {}^{\{t\}}c_{0}^{(2)} \\ {}^{\{t\}}c_{1}^{(2)} \\ {}^{\{t\}}c_{0}^{(3)} \\ {$$

### The Same Descriptor Size is Optimal for 3-11 Species

The combined descriptor is appropriate for Li-TM oxides and amino acid complexes with **11 chemical species**. The size of the descriptor is constant.



The RMSE was evaluated after 3000 training iterations for 3-5 species and after 5000 iterations for 11 species.

### **Systematic Construction of the Training Set**



<u>N. Artrith</u>, T. Morawietz, and J. Behler, *Phys. Rev. B* **83**, (2011) 153101. T Morawietz, A Singraber, C Dellago, J Behler *Proc. Natl. Acad. Sci. U. S. A.* **113**, (2016) 8368-8373. **37** 

### **Caution: Overfitting and Extrapolation**



<u>N. Artrith</u>, T. Morawietz, and J. Behler, *Phys. Rev. B* **83**, (2011) 153101. <u>N. Artrith</u> and A. Urban, *Comput. Mater. Sci.***114** (2016) 135.

### Summary of Part I – Theory of ANN Potentials

- ANN potentials are interatomic potentials based on artificial neural networks
- The ANNs represent atomic energies as function of the local atomic environment
- Input of the ANNs are invariant descriptors (feature vectors) of the local atomic environment
- Construction/training is done by iterative sampling of the relevant structure and composition space

# Part II Complex Inorganic Materials for Energy Applications

ISSN 0370-1972 Phys. Status Solidi B 250 · No. 6 June 1065–1244 (2013)



#### basic solid state physics

#### 6 2013

#### Feature Article

Neural network potentials for metals and oxides – First applications to copper clusters at zinc oxide

Nongnuch Artrith, Björn Hiller, and Jörg Behler



N. Artrith, B. Hiller, J. Behler *Phys. Stat. Sol. B* 250 (2013) 1191 (invited feature article).

**Journal Cover** 

#### **Neural Network Potential for Copper**

#### **Training of the ANN potential**



[a] V. Blum et al., Comp. Phys. Comm. 180, (2009) 2175 - 2196.

[b] J. Behler, RuNNer – A Neural Network Code for High-Dimensional PESs, Ruhr-University Bochum

#### **Low-Index Copper Surfaces**

| Surface Energies (fcc): | Surface           | DFT<br>(meV/Ų) | NN<br>(meV/Ų) |
|-------------------------|-------------------|----------------|---------------|
|                         | Cu(111)           | 93.16          | 92.74         |
|                         | Cu(100)           | 100.53         | 100.99        |
|                         | Cu(110)           | 102.39         | 103.92        |
|                         | <b>Cu(110)</b> mr | 109.93         | 111.69        |

#### **Energy Profile for Cu Adatom Diffusion:**



#### Cu(111): Complex Realistic Model

Model of a real surface with steps, kinks, and adatoms (29,443 atoms).



DFT  $\Rightarrow$  impossible NN  $\Rightarrow \approx$  few minutes (1 core)

 $\Rightarrow$  NN potentials can be used to study systems of this size.

<u>N. Artrith</u>, and J. Behler, *Phys. Rev. B* 85, (**2012**) 045439.

#### **Checking the Accuracy for Large Systems**

# Comparison of the DFT and neural network (NN) forces acting on the central atoms of clusters cut from the slab.



<u>N. Artrith</u>, and J. Behler, *Phys. Rev. B* 85, (**2012**) 045439.

### Cu@ZnO Catalyst for Methanol Synthesis

#### **ANN-MD Simulation**: Slab model ~8,000 atoms: NVT, MD at 1000 K

Training and testing sets for the ANN potential: Cu/Zn/O structures: (e.g. ideal, vacancies, defects) ~100,000 structures (90% train, 10% test) RMSEs E<sub>total</sub>: 0.005 eV/atom Forces: 0.090 eV/Bohr

Cu



Initial configuration/ **MD** movie



Configuration at 300 ps

N. Artrith, B. Hiller, J. Behler *Phys. Stat. Sol. B* 250 (2013) 1191 (invited feature article).



STM image of Cu@ZnO(1010), T= 290 K

U. Köhler, et. al, Phys. Status Solidi B 250 (**2013**) 1122.

> ANN potentials allow to simulate structural models with thousands of atoms while providing high accuracy close to the reference method

# ANN Potential: Cu/Au/O/H System

#### Au/Cu is an efficient and stable catalyst for the ORR and CO<sub>2</sub> reduction



Shao-Horn, Hamad-Schifferli, et. al, *Chem. Commun,* 48, (**2012**) 5626.

<u>Oxidation rates of  $Au_x Cu_y NPs$ </u>: depend on composition, where *k*A and *k* $\lambda$  exhibited a trend of  $Au_2 Cu_1 < Au < Au_1 Cu_1 < Au_1 Cu_2 < Cu$ 

#### How can we identify relevant compositions and (surface) structures?

# **Optimized Compositions and Ordering of Au/Cu: MC**



### **Optimized Compositions and Ordering of NPs: 3,915 atoms**

#### MC Annealing: T= 5,000-300 K

 $\Rightarrow$  Composition of Au/Cu NP (~6 nm) and cut-through in (100) and (111) directions



- $\Rightarrow$  No longer a core-shell morphology
- $\Rightarrow$  Outer layer of the NP is gold-terminated (as expected from the surface-energy)
- $\Rightarrow$  Interior bulk Au and Cu atoms form a solid solution

| CPU time/structure: 147 atoms           |        |  |
|-----------------------------------------|--------|--|
| <u>NN &lt;&lt; DFT : 10<sup>4</sup></u> |        |  |
| DFT:3.0 hours (16                       | cores) |  |
| NN : <1 second (1 d                     | core)  |  |

| CPU time/structure: 3,915 atoms |
|---------------------------------|
| DFT : Very difficult            |
| NN : 59 seconds (1 core)        |

**N. Artrith** and A. Kolpak, *Nano Lett.*,14, (**2014**) 2670.

#### Formation Energies of 55-Atom Cluster and Thermal Stability



N. Artrith and A. Kolpak, Comput. Mater. Sci., 110, (2015) 20-28.

500 k

### 55-Atom Cluster in Water and (211) Surface Slab



# Specialized ML Potentials for Assisting DFT Calculations

- > Often, a general ML potential is not necessary
- ML potential for specific structure space sufficient for accelerated sampling

### Active Site in CuO/CeO<sub>2</sub> for CO Oxidation

#### **Cu Distribution in the particles**

- MC simulations of a 3.5 nm (~1,300 atoms, Cu<sub>54</sub>Ce<sub>405</sub>O<sub>834</sub>): Cu is most stable near surface
- Cu adsorption on (100) surface and on edges favorable





J.S. Elias, <u>N. Artrith</u>, M. Bugnet, L. Giordano, G. A. Botton, A.M. Kolpak, and Y. Shao-Horn\* *ACS Catalysis* 6, (2016), 1675-1679

### Active Site in CuO/CeO<sub>2</sub> for CO Oxidation

#### Cu Distribution in the particles

- MC simulations of a 3.5 nm (~1,300 atoms, Cu<sub>54</sub>Ce<sub>405</sub>O<sub>834</sub>): Cu is most stable near surface
- Cu adsorption on (100) surface and on edges favorable



J.S. Elias, <u>N. Artrith</u>, M. Bugnet, L. Giordano, G. A. Botton, A.M. Kolpak, and Y. Shao-Horn\* *ACS Catalysis* 6, (2016), 1675-1679

### **MLP: Application to Amorphous LiPON**

- Genetic Algorithm with MLP:
- > Amorphous N doped Li<sub>3</sub>PO<sub>4</sub>: Solid Electrolyte Material for Li-ion batteries
- With N improving the conductivity and diffusivity (from MD simulations of amorphous structure models)



*Chem. Mater.* **30** (2018), 7077-7090. DOI: 10.1021/acs.chemmater.8b02812

### **AIMD: Application to Amorphous LiPON**

- ➤ Genetic Algorithm with MLP:
- > Amorphous N doped Li<sub>3</sub>PO<sub>4</sub>: Solid Electrolyte Material for Li-ion batteries
- With N improving the conductivity and diffusivity (from MD simulations of amorphous structure models)

|                                                         | at. % N | # N <sub>a</sub> | # N <sub>d</sub> | ρ         |       | D                   |
|---------------------------------------------------------|---------|------------------|------------------|-----------|-------|---------------------|
|                                                         |         |                  | co               | omputed   |       |                     |
| Li2.69PO3.38N0.31                                       | 4       | 1                | 4                | 2.04      |       | $5 \times 10^{-10}$ |
| Li2.94PO3.50N0.31                                       | 4       | 2                | 3                | 2.33      | LiPON | $7 \times 10^{-10}$ |
| Li331PO3.69N031                                         | 4       | 3                | 2                | 2.30      |       | $3 \times 10^{-12}$ |
| Li338PO3.62N038                                         | 5       | 6                | 0                | 2.31      |       | $2 \times 10^{-12}$ |
|                                                         |         |                  | exp              | erimental |       |                     |
| Li <sub>2.7</sub> PO <sub>3.9</sub> <sup>1</sup>        | 0       |                  |                  |           |       |                     |
| Li <sub>2.9</sub> PO4 <sup>49,50</sup>                  | 0       |                  |                  |           | LiPO  | $6 \times 10^{-13}$ |
| Li <sub>3.1</sub> PO <sub>3.8</sub> N <sub>0.16</sub> 4 | 2       |                  |                  |           |       |                     |
| Li33PO3.8N0.224                                         | 3       |                  |                  |           |       |                     |
| Li <sub>2.9</sub> PO <sub>3.3</sub> N <sub>0.46</sub> 4 | 6       |                  |                  |           |       |                     |

#### V. Lacivita, <u>N. Artrith</u>, and G. Ceder, *Chem. Mater.* **30** (2018), 7077-7090. DOI: 10.1021/acs.chemmater.8b02812

### LiSi Alloys for High-Capacity Li-Ion Battery Anodes

- > A specialized ANN potential: GA samples only a limited structure space
- Only ~1,000 reference structures needed for the construction of a specialized ANN potential
- Identified low-energy structures are then recomputed using DFT
- > The result is a first-principles phase diagram based on extensive sampling



<u>N. Artrith\*</u>, A. Urban, and G. Ceder, *J. Chem. Phys.* **148**, (2018) 241711 (Editor's Choice).

### LiSi Alloys for High-Capacity Li-Ion Battery Anodes

- > A specialized ANN potential: GA samples only a limited structure space
- Only ~1,000 reference structures needed for the construction of a specialized ANN potential
- Identified low-energy structures are then recomputed using DFT
- > The result is a first-principles phase diagram based on extensive sampling



<sup>&</sup>lt;u>N. Artrith\*</u>, A. Urban, and G. Ceder, *J. Chem. Phys.* **148**, (2018) 241711 (Editor's Choice).

# **A General Machine Learning Potential for LiSi**

N. Artrith: Machine-Learning Potentials

# The LiSi ANN Potential is Accurate for Diffusion



Structures not in training set
 Tested many different diffusion pathways in different alloy compositions

Si

# And it is Accurate for Long MD Trajectories





# NP Delithiation (d≈8nm) Shows Si Clustering

- MD simulations, over 4 ns at 500 K at each composition, based on nanoparticle (NP) structures with ~12,000 atoms.
- For composition within the two-phase region a core-shell structure is most stable: in the nanoparticle bulk Si atoms are isolated and near the surface Si is clustered into short Si chains.
- Further Li extraction results in Si clustering throughout the entire NP.



# ANN MD: The Li Diffusivity Varies with Li Content

- MD simulations (5 ns) of Li<sub>480-x</sub>Si<sub>128</sub> structures using the ANN potential show that structures with Si clusters (Li<sub>x</sub>Si with 1.0 ≤ x ≤ 2.25) exhibit the highest Li diffusivities with D ≈ 5-10×10<sup>-11</sup> cm<sup>2</sup>s<sup>-1</sup>.
- Isolated Si atoms (Li<sub>3.50</sub>Si and Li<sub>3.75</sub>Si) and structures in which Si forms three-dimensional networks (Li<sub>x</sub>Si with x < 1.0) exhibit much lower diffusivities of D < 5×10<sup>-13</sup> cm<sup>2</sup>s<sup>-1</sup>.



### ANN MD: The Li Diffusivity Varies with Li Content

#### **Experimental References**

#### **ANN Results**

| $D \ (\mathrm{cm}^2/\mathrm{s})$ | Method        | Reference |
|----------------------------------|---------------|-----------|
| $10^{-10}$                       | EIS           | [1]       |
| $10^{-12}$                       | CV, EIS, GITT | [2]       |
| $10^{-14}$                       | EIS, PITT     | [3]       |
| $10^{-14} - 10^{-13}$            | PITT          | [4]       |
|                                  |               |           |

| X <sub>Li</sub> | E <sub>a</sub> (eV) | <i>D</i> (cm <sup>2</sup> s <sup>-1</sup> ) |
|-----------------|---------------------|---------------------------------------------|
| 0.75            | 0.789               | 1.154 x 10 <sup>-14</sup>                   |
| 1.00            | 0.500               | 5.986 × 10 <sup>-11</sup>                   |
| 2.25            | 0.483               | 9.607 × 10 <sup>-11</sup>                   |
| 3.50            | 0.682               | 3.820 × 10 <sup>-13</sup>                   |
| 3.75            | 1.750               | 0.107 × 10 <sup>-25</sup>                   |

N. Artrith et al. arXiv:1901.09272 (2019)

R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, and Y. Cui, *J. Phys. Chem. C* 113, 11390 (2009).
 N. Ding, J. Xu, Y. Yao, G. Wegner, X. Fang, C. Chen, and I. Lieberwirth, *Solid State Ionics* 180, 222 (2009).
 J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, and O. Yamamoto, *Mater. Chem. Phys.* 120, 421 (2010).
 J. Li, X. Xiao, F. Yang, M. W. Verbrugge, and Y.-T. Cheng, *J. Phys. Chem. C* 116, 1472 (2012).

# Summary Part II – ANN Potentials in Applications

- ANN potentials are a versatile tool for the modeling of complex materials such as amorphous alloys and non-ideal oxides
- With new improved structure descriptors, the method can now be used with compositions with more than 10 chemical species
- Training accurate ANN potentials for general applications may require large reference libraries (>10,000 structures), but often specialized potentials for smaller configuration spaces are sufficient if combined with DFT



### Outlook

- More systematic tests needed to understand for which materials and applications the MLP method is successful
- Now that several implementations exist, we should have a transferable format for ANN potentials (collaborate on standardized format)
- How to sample large chemical and configuration spaces in the most efficient way?
- Including a physically motivated baseline could reduce the size of the reference library needed

### Outlook

Some more steps required for ANN potentials to become a standard tool (like other potentials):

- Interfaces with standard simulation software are needed aenet interfaces in development: ASE, Tinker, DL\_POLY, LAMMPS, PIMD
- Implementations have to become compatible so that ANN potentials can be shared
- > Model construction (training) has to be made easier
- ANN potential parameter formats should be standardized

### Outlook



N. Artrith, J. Phys. Energy (2019) just accepted (invited review)

### Acknowledgements

#### Columbia University, USA

: Prof. Jingguang Chen, Prof. Alex Urban, Dr. Mark Hybertsen (BNL)

#### The Ceder group, UC Berkeley, USA

: GRINM and China Automotive Battery Research Institute Co., Ltd.

#### The Kolpak group, MIT, USA

: Faculty for the Future Fellowship (Schlumberger Foundation)

#### The Behler group, RUB, Germany

: DFG SFB 558 Collaborative Project

#### **Computational resources**

- : Extreme Science and Engineering Discovery Environment (XSEDE)
- : Brookhaven National Laboratory (CFN Computer Cluster)









Center for Functional Nanomaterials Brookhaven National Laboratory



National Energy Research Scientific Computing Center

### Acknowledgements

#### **Collaborators:**

- > Dr. Tobias Morawietz, Michael Chen, Prof. Tom Markland (Stanford)
- > Dr. Alexander Kaiser, Prof. Michael Probst (Innsbruck University)
- > April Cooper and Prof. Johannes Kästner (Stuttgart University)
- And others









Center for Functional Nanomaterials Brookhaven National Laboratory



National Energy Research Scientific Computing Center